3,110 research outputs found

    Receiver Multiuser Diversity Aided Multi-Stage MMSE Multiuser Detection for DS-CDMA and SDMA Systems Employing I-Q Modulation

    No full text
    The so-called receiver multiuser diversity aided multistage minimum mean-square error multiuser detector (RMD/MS-MMSE MUD), which was proposed previously by the author, is investigated in the context of the direct-sequence code-division multiple-access (DS- CDMA) and space-division multiple-access (SDMA) systems that employ in- and quadrature-phase (I-Q) modulation schemes. A detection scheme is studied, which is operated in real domain in the principles of successive interference cancellation (SIC). The concept of noise recognition factor (NRF) is proposed for explaining the efficiency of SIC-type detectors and also for motivating to design other high-efficiency detectors. The achievable bit error rate (BER) performance of the RMD/MS-MMSE MUD is investigated for DS-CDMA and SDMA systems of either full-load or overload, when communicating over Rayleigh fading channels for the SDMA and over either additive white Gaussian noise (AWGN) or Rayleigh fading channels for the DS-CDMA. The studies and performance results show that the RMD/MS-MMSE MUD is a highly promising MUD. It has low implementation complexity and good error performance. Furthermore, it is a high-flexibility detector suitable for various communication systems operated in different communication environments

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    Downlink MBER beamforming transmitter based on uplink MBER beamforming receiver for TDD-SDMA systems

    No full text
    The downlink minimum bit error rate (MBER) transmit beamforming is directly derived based on the uplink MBER receive beamforming for time division duplex (TDD) space-division multiple-access (SDMA) multiple-input multiple-output systems, where the base station (BS) is equipped with multiple antennas to support multiple single-antenna mobile terminals (MTs). It is shown that the relationship between multiuser detection and multiuser transmission can still be applied for the rank-deficient system where the number of users supported is more than the number of transmit antennas available at the BS, if the MBER design is adopted. The proposed MBER transmit beamforming scheme is capable of achieving good performance for rank-deficient TDD-SDMA systems with the support of low-complexity and high power-efficient MTs, and its robustness to the downlink and uplink noise or channel mismatch is verified using simulation

    DS-CDMA with <i>M</i> -ary orthogonal modulation for wireless sensor networks simultaneously monitoring multiple events

    No full text
    In this paper, we propose a novel WSN framework for one fusion center to monitor simultaneously multiple source events (SEs), each of which has multiple states. In the proposed WSN, every SE is observed by a range of local sensors, which convey their observations to the fusion center in the principles of direct-sequence code-division multiple-access (DS-CDMA) associated with M -ary orthogonal modulation (MOM). Therefore, the proposed WSN is referred to as the MOM DS-CDMA WSN. In the MOM DS-CDMA WSN, the local sensors monitoring the same SE transmit their signals to the fusion center in the principles of time-division multiple-access (TDMA), while the local sensors serving different SEs communicate with the fusion center in the principles of DS-CDMA. By making use of the advantages of MOM, the fusion center detects the SEs’ states either coherently based on the maximal ratio combing (MRC) fusion rule, or non-coherently based on the equal gain combining (EGC) fusion rule. The detection performance of the fusion center is investigated by simulations. Specifically, the impacts of the number of SEs, the number of local sensors per SE, the observation reliability of local sensors, the reliability of the channels from local sensors to fusion center, etc., on the fusion detection performance are addressed

    Performance of Hybrid Direct-Sequence Time-Hopping Ultrawide Bandwidth Systems over Nakagami-m Fading Channels

    No full text
    This paper investigates and compares the performance of various ultrawide bandwidth (UWB) systems when communicating over Nakagami-m fading channels. Specifically, the direct-sequence (DS), time-hopping (TH) and hybrid direct-sequence time-hopping (DS-TH) UWB systems are considered. The performance of these UWB systems is studied associated with employing the conventional single-user correlation detector or minimum mean-square error (MMSE) multiuser detector. Our simulation results show that the hybrid DS-TH UWB system may outperform a corresponding pure TH-UWB or pure DS-UWB system in terms of the achievable error performance. Given the total spreading gain of the hybrid DS-TH UWB system, there is an optimal setting of the TH spreading factor and DS spreading factor, which results in the best error performance

    Error probability and capacity analysis of generalised pre-coding aided spatial modulation

    No full text
    The recently proposed multiple input multiple output (MIMO) transmission scheme termed as generalized pre-coding aided spatial modulation (GPSM) is analyzed, where the key idea is that a particular subset of receive antennas is activated and the specific activation pattern itself conveys useful implicit information. We provide the upper bound of both the symbol error ratio (SER) and bit error ratio (BER) expression of the GPSM scheme of a low-complexity decoupled detector. Furthermore, the corresponding discrete-input continuous-output memoryless channel (DCMC) capacity as well as the achievable rate is quantified. Our analytical SER and BER upper bound expressions are confirmed to be tight by our numerical results. We also show that our GPSM scheme constitutes a flexible MIMO arrangement and there is always a beneficial configuration for our GPSM scheme that offers the same bandwidth efficiency as that of its conventional MIMO counterpart at a lower signal to noise ratio (SNR) per bit

    First-hop-quality-aware dynamic resource allocation for amplify-and-forward opportunistic relaying assisted SC-FDMA

    No full text
    In this paper we exploit the benefits of the diversity gains arising from a cluster of opportunistic relays (OR) and from the independently fading subcarriers of multiple users. Our goal is to improve the energy-efficiency of the OR assisted single-carrier frequency-division multiple-access (SC-FDMA) uplink using amplify-and-forward (AF), where the direct transmission (DT) link is unavailable. By assuming that the pilot aided channel quality information (CQI) of all the users may be exchanged amongst the cooperating relays, we propose two joint dynamic resource allocation (DRA) schemes based on the so-called ’first-hop quality awareness’. Our results demonstrate that compared to the DT benchmark, the proposed joint DRA schemes are capable of achieving a power reduction of 10dB for a single-antenna base station (BS) receiver, albeit for a multi-antenna BS the power-reduction remains more modest

    Reduced-rank adaptive least bit-error-rate detection in hybrid direct-sequence time-hopping ultrawide bandwidth systems

    No full text
    Design of high-efficiency low-complexity detection schemes for ultrawide bandwidth (UWB) systems is highly challenging. This contribution proposes a reduced-rank adaptive multiuser detection (MUD) scheme operated in least bit-errorrate (LBER) principles for the hybrid direct-sequence timehopping UWB (DS-TH UWB) systems. The principal component analysis (PCA)-assisted rank-reduction technique is employed to obtain a detection subspace, where the reduced-rank adaptive LBER-MUD is carried out. The reduced-rank adaptive LBERMUD is free from channel estimation and does not require the knowledge about the number of resolvable multipaths as well as the knowledge about the multipaths’ strength. In this contribution, the BER performance of the hybrid DS-TH UWB systems using the proposed detection scheme is investigated, when assuming communications over UWB channels modeled by the Saleh-Valenzuela (S-V) channel model. Our studies and performance results show that, given a reasonable rank of the detection subspace, the reduced-rank adaptive LBER-MUD is capable of efficiently mitigating the multiuser interference (MUI) and inter-symbol interference (ISI), and achieving the diversity gain promised by the UWB systems
    corecore